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Introduction

The analysis of large structures, especially in three dimensions, can result in <*iffuecs
matrices that demand an exceptionally large amount of computer storage. The storage needs of
these matrices depend to a large extent on their sparsity and the data structure that is used to
store them. The choice of the data structure in turn depends on the method that is used . 0.
the associated system of equations. Presently, most solution schemes used in finite element com-
puter programs are based on direct methods, i.e. triangular factorization of the stiffness matrix,

K. Starting from a given mesh description, a finite element program performs the following steps:
1.  determine the sparsity structure of K,
2.  renumber the equations to reduce the storage demands of K,
3.  reserve the required storage for K,
4. compute the element matrices,
5.  assemble the element matrices into K,
6. compute the triangular factorization of K,
7.  solve the associate system of equations.

In many applications the available primary memory is not sufficient to store the assembled
matrix, and therefore secondary storage is used. In this circumstance, steps 4 through 7 involve
data transfers between primary and secondary store, often referred to as I/O. In this case, K is
partitioned into blocks and each block is assembled and stored on secondary store. The blocks
are then brought back into the main memory to form the factors of K. For large enough prob-

lems the 1/O costs can dominate the computation costs.

A great deal of eflort has been expended to develop new procedures for reordering the equili-
brium equations, thus reducing the overall storage requirements in the solution steps 5, 6 and 7
[1,2,3]. This is motivated by the fact that reduction in storage translates directly into a savings

in the 1/O costs. Amoag the maay solution schemes ueed, the frontal method 4] and the profile

or skyline method [1] are probably the most populas. In [8] it is shown that when the same nodal
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elimination ordering is used the profile method performs the same number of operations as tae
frontal method; in [S] an algorithm is described that delivers a good frontal node ordering for the
profile method. The significant difference between these methods is that the frontal method otten
combines steps 4, 5 and 6. In this way the 1/O during the assembly step is overlapped with the
I/O in the factorization step; thus, the frontal method results in a saving that is equal to the cov.
of 1/O in step 4. Alternatively, the assembly of a profile stored matrix which is partitioned into
blocks requires a multiple pass through the elements to perform the assembly. The principle
differences in the 1/O costs of the two methods during factorization may be traced to the above
differences in the partitioning of the matrix into a frontal or a profile form. The principle disad-
vantage of the frontal method is the added overhead to retain a small front width during the tri-
angular factorization in step 6 and subsequent resolutions in step 7. For example, in resolution of
equations this added overhead may lead to CPU costs which are several times those of a profile

stored resolution.

Ia this paper we take a different approach. We use the following simple observation:

The assembly process Is iIndependent of the solution procedure.

In other words, one should use the most cflicient data struciure for the assembly process, step 5,
and then restructure the data for ones favorite solution scheme, i.e., either frontal or profile. In
this way one can achieve the same reductions in 1/O as the frontal method and at the same time
maiatain bigh modularity of the program. Here we develop a data structure that stores only the
nonzero terms in the stiffness matrix in a compacted form, and present an algorithm for the
assembly of K for this storage method. This approach results in considerable reduction in the
storage needs during the assembly process. Therefore large matrices often may be fully assembled

in-core resulting in a considerable reduction in 1/O.

This approach has the added advantage that the program is not built around a single equa-
tion solver. One can have many solution procedures by simply expanding the compacted struc-

ture of K into a form appropriate for each particular solution method. Furthermore, the com-

pacted structure can be used directly for iterative solution techniques such as the conjugate
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b R

gradient type methods [6,7].

Storage Scheme

We now describe the compacted structure that is used to store K. We only consider sym-

metric matrices, although the extension to the nonsymmetric case is trivial, and store oniy 1. ! 3
+ upper triangular part of K is stored. The diagonal terms of K will be stored separately in 2 ::a- ]
- gle array of length n, where n is the total number of equations. The remaining ofi-diagonals will
be placed in a second array of length r, where r is the total number of nonzero ofl-diagonal terms

in the upper triangular part of K. All the elements in the same column will be placed consecu-

tively in this array, starting from the top of the column down to the diagonal (excluding the diag- £
onal term). The columns are stored consecutively from the second to the last. For each entry in t
- this array we store its row number in a corresponding integer array of length r. The example Y

below demonstrates the final storage scheme.

Ezample:
Consider the matrix
= 19 12 15] H
| 21011 13 14 &
: 3 16 17
4 19 21 £
- K= 518 20
6 22
72 :
- | 8|

The array diag contains the diagonal terms of K as shown below.

diag = [1,2,3,4,5,6,7,8] . 3
A real array then stores the off-diagonal terms of K and a corresponding integer array denotes the ] .'i

row number of each off-diagonal term as show below.

- off-disg = [9,10,11,12,16,13,17,18,14,19,20,15, 21, 22, 23] 3
irow=1{1,22,1,3,223,85,2,4,51,4,6, 7 -

In addition, a single integer array of leagth n is also required to point to the end of entries from a

givea column. For the above example this array is
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jeol = [0,1,2,3,5,8,11,15)

The total storage requirement is r + n real words and r + n integer words. Using a 16
bit integer word, %(n + r) real words (64 bit) will be sufficient. Then the largest number of
equations that can be solved this way is 2'® - 1 =~z 32000. With a 32 bit integer word, the #-+1\

storage required will be -:—(n + r) real words.

Derivation of the Assembly Process

In this section we give a step by step derivation of the assembly algorithm. Each step is
demonstrated with the aid of the mesh example in Fig. 1. First we introduce some notation. A
finite element mesh is denoted by M = {E , N) where E and N represent the collection of ele-
ments and nodes in the mesh. A part of the input information provided to a finite element pro-
gram is the set of nodes belonging to an element. This we denote as N,CN. For example ele-
ment 4 in Fig. 1 has the connectivity set N, = {5,8,9,6]). In Table 1 we give the complete list
of the connectivity sets N, for each element in example 1. These data are usually assembled in a
single array known as the cornectivity array. The complete set { N,y ¢€E} is sufficient to
describe the connectivity of a given mesh. Another part of the input data is the boundary condi-
tions that determine the set of the indices of all the active degrees of freedom at node p. We
denote this set as U,. In Table 1 we give the set { U, Y pEN} for the example in Fig. 1. In this
example, we assume that there are two degree of freedom at each node. The collection of N,,

column 2, and U,, column 4, given in Table 1 is sufficient to determine the sparsity structure of

the stifflness matrix associated with a given mesh.
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Element Connectivity Boundary Conditions

Element | Set of Nodes for
No. ¢ each Element, N,

Node | Set of Unknowns for
No. p | the Active nodes, U,

1 {1,452} 2 {1}
2 {2563} 4 {2}
3 (4,7,85} 5 {34}
4 {58,96) 6 {5}
5 {7,11,8} 7 {6}
6 {10,11, 7} 8 {7,8}
7 {8 11,9} 9 {9}
8 {11,12,9} 1 {10}

Table 1. Connectivity sets and active degrees of freedom for the mesh in Fig. 1.

Our objective here is to find the set of indices of the unknowns that are coupled with a
given degrec of freedom. This is precisely the row number of each nonzero term in a given
column of the stifiness matrix, irow, that is required for the storage scheme described in the pre-

vious section.

First, we must establish the set of elements that are connected to each node. This can be
done by inspecting the element connectivity sets. Looking at the second column of Table 1, for
example node 4 appears twice, in rows 1 and 3. We then conclude that node 4 is connected to
elements 1 and 3. This process must be repeated for each node. The difficulty here is that we do
not know apriori the number of storage locations needed to identily the set of elements for each
node. For this reason the above process is carried out in two s;.eps. The number of elements con-
nected to each node is determined and stored first. We refer to this as the E-degree (element
degree) of each node. In the example the E-degree of node 4 is 2. The E-degree also determines
the length of the array that is required to keep the set of elements connected to each node. For
each node p we denote this set by E, C E. Then the above process is simply to evaluate

E,=({c|p€N) (n
for each sode p. This equation may be thought of as finding the pseudo-inverse of the connec-

tivity array. The E-degree of node p is the number of terms in E, (the cardinality of E,). See
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columns two and three of Table 2 for the E-degree and the complete set of £, for the nodes 1o

example 1.

Next, we find for the set of nodes that are adjacent to each node p. We denote this },
A,CN. This is the set of all nodes that belong to an element with p as one of its nodes Huvicx
established the set of elements connected to node p, the adjacent nodes are all the ot® v .-~
belonging to these elemeats. ln example 1 node 4 is connected to elements 1 and 3 (see column 2
of Table 2). The set of nodes belonging to elements 1 and 3 are obtained by inspecting column 2
of Table 1; these are { 1,4, 5,2 } and { 4, 7, 8, 5 } respectively. Then the set of nodes adjacent
todis A,={1,5 2,7,8). The N-degree (nodal degree) of a node is the number of nodes adja-
cent to it and is the cardinality of A,. In columns 4 and 5 of Table 2 we give the N-degree and
the adjacency set of each node in the nodal graph of example 1 (Fig. 2). This step is simply to

evaluate the equation

A'=¢%Js N,-n (2

Note that both A, and N-degree can be obtained in the same loop.

Node E N S
P degree E, degree A, degree S,
1 1 {1} 3 {4,52) 0 ¢
2 2 {1,2)} 5 {1,4,5¢6,3) 1 (1}
3 1 {2) 3 {256) 1 {2}
4 2 1,3} 5 {125,738} 2 {1,2}
5 4 {1,342} 8 {1,4,7,89,6,3,2} 4 {1,432}
6 2 {24) 5 {258,923} 3 {2,53)
7 3 {3,56) 5 {10,11,8,5,4) 2 {45)
8 4 {3,574) 6 {11,9,6,54,7) 4 {6,54,7)
9 3 {4,7,8) 5 {11,12,6,5,8) 3 {6,58)
10 1 {6} 2 {7, 11} 1 {7}
1 4 {6,578} 5 {10,12,9,8,7) 4 {10,987}
12 1 (8} 2 {11,9) 2 (11,9}
Table 2. The result of algorithm for establishing the row index of the nonzero terms in K

for example 1.
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Since we want to store only the upper triangular part of K we need to store only a subset of
A,. This will be the set of nodes in A, with an index less than p; that is
S, ={i | i€A,andi < p}. We refer to the number of terms in S, as the S-degree {:-r:-
degree) of a node. The set S, is only useful when the numbering of the unknowns are such thzt
when i < j all the unknowns at node s have a smaller index than the uckuowns at nade
Whenever this is not true it is necessary to use the complete set of adjacent nodes A, together

with the numbers of the unknowns for each node (e.g., see listing in Appendix A.).

Finally, for a given unknown at node p with index jEU, we find the set of the indices of all
other unknowns that are coupled with u,. This will be the set of row indices R, for nonzeros in

j-th column of K. Then

R,= ®)
('EA',

For example 1 R, , is the adjacency set of j in the graph of the unknowns in Fig. 3. Since we only
store the upper triangular part of K we scan through ﬁ, and use the subset defined by:

R, = {i|ieR,andi<j} (4)
R, is the row index of all the nonzero terms in the j-th column of the upper trizangular part of K.

The complete set of R, for the example problem is presented in Table 3.

D.OF. | Node
J P R,
1 2 {o}
2 4 {1}
3 5 {1,2}
4 5 {3,21)
5 6 {4,31)
6 7 {3,4,2)
7 8 {6,2,4,53)
8 8 |{234,567)
9 9 | (7.4538)
10 11 {9,6,7,8)

Table 3. The row indices of the nonsero terms in the upper triangular part of K.

e ———————— g gt
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The listing of a FORTRAN program that performs all the steps that is described 1 iins
section is given in Appendix A. In this Appendix we also provide the subroutine that use< the

row indices to perform the assembly of K.

Numerical Result

We use the algorithm described in the previous section to assemble the stifine<s matrir-s ..
the problems described in Table 6. The total storage required during the assembily step is
evaluated. We compare these results to similar results obtained when the assembly is performed
directly into a profile data structure. The storage requirement of the compacted assembly is not
eflected by the node ordering. For the assembly into a profile form, we numbered the nodes
across the width of the mesh to reduce the bandwidth of the stifiness matrix. Although, the
bandwidth could have been reduced further using a renumbering scheme such as [2,3], we omitted

this step for simplicity. The results for examples 2 to 6, given in Table 6, are presented in Table

4 below.
Description No. of No. of No. of Stores for Stores for
of Problem nodes | elements | equations profile Compacted K
Cantilever type structure 225 184 428 10204 5340
Small Cylinder structure 231 200 440 10492 5679
Large Cylinder structure 496 450 960 32542 12715
4X 4X 4 solid structure 125 64 300 21945 11634
8x8X8 solid structure 729 512 1944 470043 94272

Table 4.

Comparison of the storage demands of profile and compacted assembly for K in

examples 2 to 6.

The results in Table 4 is obtained based on the assumption that a real word is twice as long as an
integer word. We observe a reduction from 40% for two dimensional (2-D) problems to 80% for
3.D problems for these examples. The reductions will be more if short integer words are used. It
is interesting to note that the required storage for compacted structure varies linearly with the

pumber of equations. Therefore, the saving will be more for larger problems. In Table 5 we give
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the storage counts for the two methods considered here on square mesh in 2-D) and culps 1y 2= - e '

a function of the number of equations. To obtain these estimates we assumed that there 15 uly !

l

one degree of freedom per node.

Dimension Halt Profile | Compacted
- of Problem | bandwidth | storage storage

1 2 5/2n 3n
2 n'f? n*P 15/2 n
3 n?/ b/ 2in

Table 5. Estimated storage needs for each scheme on regular mesh. n is the number of equations.

Conclusion

The essential steps in a finite element program can be modified to make use of the com-

pacted assembly described here. Accordingly, we perform the following steps:

1. Obtain the row indices of the nonzero terms in K.

2.  Assemble the matrix in compact form.

3. Choose a solution procedure and renumber the equations to reduce the storage

TP AT L e e AN oA - 1

|
¢
L.
demands of the factors of K. ‘
|
i

expand the compacted K into a data structure suitable for the solution method.

A
[

§5.  solve the associated system of equations.

When there is insufficient primary storage, the assembly of the matrix in compacted form "

’ ' opens a number of possible avenues that one can take to reduce the 1/O cost. The expansion of

T

the compacted form need not be done immediately after it's assembly. The matrix can be kept in
- compact form and put on secondary store and expaaded into a full prolile form oaly whea a fac-

. torization must be performed. This way the number of data eatries that is read (in the luput

pEpor——

phase of [/O) can be reduced comsiderably, which is turn results in a reduction ia the solution

time.




Figure 1. Finite element mesh of example 1.

-

Figure 2. Nodal graph for the mesh of example 1.
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Figure 3. The graph of unknowns for the mesh of example 1. 3
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Example 2: Cantilever Struec-
ture, left end fixed, plane stress
elements with 2 degrees of free-
dom per node.

Example 3: Small Cylinder,
both eads fixed in tangential
direction, plane strain elements
with 2 degrees of freedom per
aode.

Example 4: Large Cylinder,
both ends fixed in tangential
direction, plane strain elements
with 2 degrees of freedom per
ncde.

3

Example 5: 4X 4% 4 Solid cube,
fixed base, solid elements with 3
degrees of freedom per node.

Example 6: 8X8X8 Solid cube,
Bixed base, solid elements with 3
degrees of freedom per node.

Table 6. Description of test examples.
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Appendix A: Program Listing ]

) . SUBROUTINE ELCNT(NUMNP , NUMEL ,NEN,NEN1, IX, IC) !
DIMENSI1ON IX(NEN1,1),1C(1)

OF EACH NODE, THEN BECOMES A POINTER FOR AN ARRAY THAT
CONTAINS THE SET OF ELEMENTS CONNECTED TO EACH NODE.

COUNT THE NUMBER OF ELEMENTS EACH NODE BELONGS TO
. CALL [ZERO( 1C,NUMNP)

c
C.... INPUT
- c NUMNP TOTAL NO. OF NODES IN THE MESH
c NUMEL TOTAL NO. OF ELEMENTS IN THE MESH i
c NEN MAX. NO. OF NODES PER ELEMENT '
c NEN1 DIMENS ION OF 1X ARRAY -
- c X ELEMENT CONNECTIVITY ARRAY
c
C.... OUTPUT ;
c 1C ARRAY OF LENGTH NUMNP. IT FIRST HOLDS THE ELEMENT DEGREE :
C p
c
c
C..
c

DO 110 N = 1,NUMEL
DO 100 J = 1,NEN
1 = 1X(J,N) !
IF(1.GT.0) IC(1) = IC(1) + 1 :
- 100 CONT INUE
110  CONTINUE
c
C.... SET UP POINTERS t{
- c .
DO 120 1 = 2,NUMNP :
& 1C(1) = 1C(1) + IC(1-1) |
; 120 CONTINUE i
o]
- RETURN
‘ END
SUBROUTINE CASSEM(D,A,B,S,P, JCOLE, IROW,LD, ID ,NST,NEL,AFL,BFL) i
IMPLICIT DOUBLE PRECISION (A-H,0-2) 8
LOGICAL AFL,BFL 3
- DIMENSION D(1).A(1),B(1),S(NST,1),P(1),JCOLE(1),IROW(1),LD(1)
1 ,ID(1)
c
c COMPACT ASSEMBLY OF PROFILE MATRIX
- c
DO 200 J = 1,NEL
N = LD(J)
: IF ( AFL .AND. N .GT. 1 ) THEN
DO 150 1 = 1,NEL [
- K = LD(I) .
IF ( K GT. 0 .AND. K .LT. N ) THEN H
INZ = INZA(JCOLE(N-1)+1,JCOLE(N), IROW, K) ¢
A(INZ) = A(INZ) + S(I,J) :
- END IF ‘
150 CONT INUE .
END IF
. c.... ASSEMBLE THE DIAGONAL '
IF (N GE. 1 ) THEN i
- IF ( AFL ) D(N) = D(N) + S(J,J) ’
C.... ASSEMBLE THE LOAD IF NECESSARY
s IF ( BFL ) B(N) = B(N) + P(J) +
END IF X
- 200 CONTINUE :
RETURN 4.
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SUBROUTINE COMPRO(NUMNP , NUMEL ,NEN,NEN1 ,NDF, IX, ID, IC, IROW, IELC,
1 JCOLE ,KP)
DIMENSION IX(NEN1,1),ID{(NDF,1),1C(1),IRON(1),1ELC(1),6 JCOLE(1)
C
c FOR (NUMNP,NUMEL ,NEN,NEN1, IX,1C) SEE SUBROUTINE ELCNT '
C.... INPUT
o] NDF NUMBER OF UNKNOWNS AT EACH NODE ‘
C 1D ACTIVE UNKNOWNS AT EACH NODE i
C.... OUTPUT
C IELC  HOLDS THE SET OF ELEMENTS CONNECTED TO EACH NODE
C IROW  ROW NUMBER OF EACH NONZERO IN THE STIFFNESS MATRIX
C JCOLE END OF ENTRIES IN IROW FORM A GIVEN COLUMN
c -
Cc.. FIND ELEMENTS CONNECTED TO NODES ‘
C i
CALL 1ZERO (1ELC, IC(NUMNP))
DO 230 N = 1 NUMEL
DO 220 J = 1 ,NEN
1 = IX(J.N)
iIF (I .GT. 0 ) THEN
KP = ic(1)
200 IF ( IELC(KP} .EQ. 0 ) GO TO 210
KP =KP - 1
GO TO 200
210 1ELC(KP) = N
- END IF
. 220 CONTINUE
4 230 CONT INUE
c
- C. ... SET UP COMPRESSED PROFILE POINTERS
c
KP =0
: NEP = 1
: DO 350 ! = 1,NUMNP
{ - NE = IC(1)
$ DO 340 J) = 31 ,NDF
. NEQ = ID(11,1)
IF ( NEQ .GT. THEN

0 )
- JCOLE(NEQ) = KP
KFO = KP + 1
IF ( NEP .LE. NE ) THEN
| DO 330 N = NEP,NE
‘ NN = IELC(N)
- DO 320 J = 1,NEN
K = 1X(J,NN)
. DO 310 JJ = 1 ,NDF
: NEQJ = ID(JJ.K)
_ IF (NEQ} .GE NEQ .OR. NEQJ .LT. 0) GO TO 310

c
C.. CHECK TO SEE IF NODE ALREADY IN LIST
: ]
F IF ({ KPO .LE. KP ) THEN
- DO 300 KK = KPO, KP
IF( IROW(KK) EQ. NEQ} ) GO TO 310
- 300 CONT I NUE
< END IF
ii KP = KP + 1
r & IROW(KP) = NEQJ
sto CONT INUE
. 320 CONT INUE
s30 CONT I NUE
- JCOLE(NEQ) = KP
END IF
, END IF
340 CONT INUE
- NEP = NE + 1
350 CONTINUE

RETURN
END
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INTEGER FUNCTION INZA(N1, N2, IROW,K)
DIMENS ION IROW(1)

FIND THE TERM FOR THE ASSEMBLY

DO 100 N = N1 N2
IF ( IROW(N) .EQ. K ) THEN
INZA = N
RETURN
END IF
CONT I NUE
ERROR IF LOOP EXITS
STOP
END

SUBROUTINE 1ZERO( 1A, ,NN)
DIMENS ION IA(NN)
DO 100 N = 1,NN
1A(N) =0
CONT INUE
RETURN
END




